7th International HEC-DPSSL Workshop September 12-14, 2012 Lake Tahoe, California

Numerical evaluation of ASE, heat generation and energy extraction in a 100 J cryogenically cooled multi-slab amplifier operating at 10 Hz for HiLASE Project

Magdalena Sawicka

- Introduction
- Description of the model
- Results:
 - pump studies
 - population inversion
 - heat deposition
 - amplification
 - temporal evolution of ASE and the stored energy
 - spectral evolution of ASE
- Conclusion
- Plans for the future

Introduction

Stored energy and amplification are limited by ASE

Population inversion in the active medium:

Energy of amplified photons changes with:

$$dJ = J(g_0 - \alpha)dl$$

project supported by:

Bulk parasitic oscillations condition: Rexp $[n_2/n_1(\alpha D)]=1$

The model:

Amplifier parameters

- Yb:YAG gain medium @ 160K
- 8 slabs
- 60x60x8 mm³ or 45x45x7 mm³ or 45x45x8 mm³ with 4 mm gap
- Variable or constant Yb ions concentration designs
- 30 mm of Cr:YAG absorptive layer*
- Cr⁴⁺ concentration: 0.34 at. %
- Wavelength resolved crosssections

IoP-Prague in collaboration with IOQ-Jena

^{*} proposed and tested by DiPOLE CLF RAL UK

Pump parameters

- Pumped from both sides
- Polychromatic pump
- Central wavelength: 938 nm
- FWHM 6 nm
- Pump fluence: 2x5 J/cm2
- Pump energy: 360 J or 202.5 J
- Super-gaussian (16th order) beam profile
- Pump duration: 1 ms

project supported by

Pump parameters

		wavelength [nm]						
		935	936	937	938	939	940	941
bandwidth - FWHM [nm]	3	0.526	0.532	0.535	0.533	0.535	0.535	0.533
	4	0.526	0.530	0.533	0.535	0.535	0.535	0.533
	5	0.526	0.529	0.532	0.535	0.535	0.533	0.530
	6	0.526	0.529	0.532	0.533	0.533	0.532	0.526
	7	0.526	0.529	0.530	0.532	0.532	0.527	0.522

Transverse map of population inversion

Parameters used for the simulation:

- 8 slabs 60x60x8 mm³ each
- variable doping concentration
- pumped from both sides
- 16th order super-gaussian pump beam profile
- pumping fluence: 2x5 J/cm2

Influence of the doping concentration

8 slabs 60x60x8mm³ each Constant doping: 0.5 at. % in all slabs

8 slabs 60x60x8mm³ each Variable doping along slabs : 0.3- 1.3 at. %

Sawicka et al., JOSA B, Vol. 29, Issue 6, pp. 1270-1276 (2012)

Longitudinal heat deposition

Different treatments of the side walls linese

Aperture size	60 mm x 60 mm				
thickness of the slab [mm]	8	8	8		
Pumping	both sides	both sides	both sides		
total pump fluence[J/cm ²]	10	10	10		
total pump energy [J]	360	360	360		
Reflectivity of the side walls	R=50%	R=30%	R=0		
Eunabs [J]	5,7	5,8	5,8		
Estored [J]	101,8 144,7		190,8		
Eabs in walls[J]	225,3 178,0		133,6		
Eout [J]	13,3	16,5	17,4		
A=Ease/Ese	1,87	0,84	0,26		
$\eta_{\sf st}$	0,28	0,40	0,53		

What can happen at the edge of Cr:YAG

Transverse heat deposition

50 % of pump energy is stored in the gain medium

10 % is absorbed in Yb:YAG due to defects and converted into heat

30 % is absorbed in the cladding and converted into heat

10 % escapes from the active medium

Energy balance done for:

- 8 slabs 60x60x8 mm³ each
- with 30 mm of Cr:YAG layer
 with 0.34 at. % concentration
- variable doping concentration of Yb ions
- 360 J of pump energy
- R=0 at side walls

Energy balance

Aperture size	45 m	m x 45 mm	60 mm x 60 mm	
thickness of the slab [mm]	7	8	8	
Yb doping concent.	0.4 0.55 0.86 1.5	0.34 0.46 0.72 1.34	0.34 0.46 0.72 1.34	
i a depinio comecina	1.5 0.86 0.55 0.4	1.34 0.72 0.46 0.34	1.34 0.72 0.46 0.34	
Pumping	both sides	both sides	both sides	
CrYAG thickness [mm]	30	30	30	
Cr doping conc.	0.34	0.34	0.34	
total pump fluence[J/cm²]	10	10	10	
total pump energy [J]	202,5	202,5	360	
Eunabs [J]	3,2	3,3	5,8	
Estored [J]	109,5	111,0	190,8	
Eabs in walls[J]	73,5	72,5	133,6	
Eesc [J]	9,3	8,8	17,4	
A=Ease/Ese	0,22	0,19	0,26	

Temporal evolution of Est

Spectral evolution of ASE radiation

Spectral evolution of ASE radiation

Amplification process

Results of the amplification

Amplification done for:

- 10 J/cm² of pump fluence
- 8 slabs 60x60x8 mm³ each with 30mm of Cr:YAG layer
- Seed energy fluence: 0.2 J/cm^2
- 16 slabs 45x45x8 mm³ each 2 with 30mm of Cr:YAG layer 2 heads
- Seed energy fluence: 0.008 J/cm²
- 16 slabs 45x45x7 mm³ each with 30mm of Cr:YAG layer 2 heads
- Seed energy fluence: $0.008 \, J/cm^2$

Optical losses included

Conclusions

- 3D model of multislab amplifier for energy storage, heat distribution and amplification has been presented
- Heat deposition -> Comsol
- Stored energy (gain) -> Miro
- Different slab walls treatmeants were investigated
- 3 different amplifier head architectures have been designed and compared
- In each design, the seed beam can be amplified up to 100 J

"To do" list

- Measurements of spectroscopic parameters of the active material at cryogenic temperatures with the resolution of 20 pm.
- Measurements of scattering on roughened surfaces
- Experimental benchmarking of the program

